Random walks on discrete cylinders with large bases and random interlacements
نویسنده
چکیده
Following the recent work of Sznitman [20], we investigate the microscopic picture induced by a random walk trajectory on a cylinder of the form GN ×Z, where GN is a large finite connected weighted graph, and relate it to the model of random interlacements on infinite transient weighted graphs. Under suitable assumptions, the set of points not visited by the random walk until a time of order |GN |2 in a neighborhood of a point with Z-component of order |GN | converges in distribution to the law of the vacant set of a random interlacement on a certain limit model describing the structure of the graph in the neighborhood of the point. The level of the random interlacement depends on the local time of a Brownian motion. The result also describes the limit behavior of the joint distribution of the local pictures in the neighborhood of several distant points with possibly different limit models. As examples of GN , we treat the d-dimensional box of side length N , the Sierpinski graph of depth N and the d-ary tree of depth N , where d ≥ 2.
منابع مشابه
A lower bound for disconnection by random interlacements
We consider the vacant set of random interlacements on Z, d ≥ 3, in the percolative regime. Motivated by the large deviation principles recently obtained in [13], we investigate the asymptotic behavior of the probability that a large body gets disconnected from infinity by the random interlacements. We derive an asymptotic lower bound, which brings into play tilted interlacements, and relates t...
متن کاملRandom Walk on a Discrete Torus and Ran- Dom Interlacements
We investigate the relation between the local picture left by the trajectory of a simple random walk on the torus (Z/NZ), d ≥ 3, until uN time steps, u > 0, and the model of random interlacements recently introduced by Sznitman [9]. In particular, we show that for large N , the joint distribution of the local pictures in the neighborhoods of finitely many distant points left by the walk up to t...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملOn Pinned Fields, Interlacements, and Random Walk on (z/nz)
We define two families of Poissonian soups of bidirectional trajectories on Z2, which can be seen to adequately describe the local picture of the trace left by a random walk on the two-dimensional torus (Z/NZ)2, started from the uniform distribution, run up to a time of order (N logN)2 and forced to avoid a fixed point. The local limit of the latter was recently established in [6]. Our construc...
متن کاملLarge deviations for simple random walk on percolations with long-range correlations
We show quenched large deviations for the simple random walk on percolation models with long-range correlations defined by Drewitz, Ráth and Sapozhnikov [3], which contain supercritical Bernoulli percolations, random interlacements, the vacant set of random interlacements and the level set of the Gaussian free field. Our result is an extension of Kubota’s result [8] for supercritical Bernoulli ...
متن کامل